Properties

Label 1.103.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 103 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$103 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 9 x^{4} + 101 x^{3} + 129 x^{2} - 91 x + 1373 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{103}(57,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 30 + \left(15 a + 6\right)\cdot 31 + \left(11 a + 30\right)\cdot 31^{2} + \left(16 a + 18\right)\cdot 31^{3} + \left(10 a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 24 + \left(10 a + 10\right)\cdot 31 + \left(21 a + 6\right)\cdot 31^{2} + \left(17 a + 22\right)\cdot 31^{3} + \left(16 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 16 + \left(20 a + 5\right)\cdot 31 + \left(9 a + 7\right)\cdot 31^{2} + \left(13 a + 5\right)\cdot 31^{3} + \left(14 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 25 + \left(15 a + 24\right)\cdot 31 + \left(19 a + 6\right)\cdot 31^{2} + \left(14 a + 9\right)\cdot 31^{3} + \left(20 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 29 + \left(13 a + 1\right)\cdot 31 + \left(6 a + 6\right)\cdot 31^{2} + \left(21 a + 16\right)\cdot 31^{3} + \left(2 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 1 + \left(17 a + 12\right)\cdot 31 + \left(24 a + 5\right)\cdot 31^{2} + \left(9 a + 21\right)\cdot 31^{3} + \left(28 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,3)(5,6)$
$(1,2,5,4,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)(5,6)$$-1$
$1$$3$$(1,5,3)(2,4,6)$$-\zeta_{3} - 1$
$1$$3$$(1,3,5)(2,6,4)$$\zeta_{3}$
$1$$6$$(1,2,5,4,3,6)$$-\zeta_{3}$
$1$$6$$(1,6,3,4,5,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.