Properties

Label 1.1009.4t1.1c2
Dimension 1
Group $C_4$
Conductor $ 1009 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$1009 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 378 x^{2} + 2081 x - 67 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{1009}(469,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 38\cdot 41 + 9\cdot 41^{2} + 36\cdot 41^{3} + 39\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 40\cdot 41 + 20\cdot 41^{2} + 5\cdot 41^{3} + 28\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 9\cdot 41 + 16\cdot 41^{2} + 20\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 34\cdot 41 + 34\cdot 41^{2} + 19\cdot 41^{3} + 22\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,3,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,4,3,2)$$-\zeta_{4}$
$1$$4$$(1,2,3,4)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.