Properties

Label 1.10069.3t1.1c1
Dimension 1
Group $C_3$
Conductor $ 10069 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_3$
Conductor:$10069 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 3356 x + 75331 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3$
Parity: Even
Corresponding Dirichlet character: \(\chi_{10069}(5363,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 10\cdot 37 + 5\cdot 37^{2} + 20\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 37 + 10\cdot 37^{2} + 26\cdot 37^{3} + 25\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 25\cdot 37 + 21\cdot 37^{2} + 27\cdot 37^{3} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$1$
$1$$3$$(1,2,3)$$\zeta_{3}$
$1$$3$$(1,3,2)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.